Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gut Microbes ; 14(1): 2136467, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36261888

RESUMO

The increasing incidence of Type 1 diabetes has coincided with the emergence of the low-fiber, high-gluten Western diet and other environmental factors linked to dysbiosis. Since Lactiplantibacillus plantarum 299 v (Lp299v) supplementation improves gut barrier function and reduces systemic inflammation, we studied its effects in spontaneously diabetic DRlyp/lyp rats provided a normal cereal diet (ND) or a gluten-free hydrolyzed casein diet (HCD). All rats provided ND developed diabetes (62.5±7.7 days); combining ND with Lp299v did not improve survival. Diabetes was delayed by HCD (72.2±9.4 days, p = .01) and further delayed by HCD+Lp299v (84.9±14.3 days, p < .001). HCD+Lp299v pups exhibited increased plasma propionate and butyrate levels, which correlated with enriched fecal Bifidobacteriaceae and Clostridiales taxa. Islet transcriptomic and histologic analyses at 40-days of age revealed that rats fed HCD expressed an autophagy profile, while those provided HCD+Lp299v expressed ER-associated protein degradation (ERAD) and antioxidative defense pathways, including Nrf2. Exposing insulinoma cells to propionate and butyrate promoted the antioxidative defense response but did not recapitulate the HCD+Lp299v islet ERAD transcriptomic profile. Here, both diet and microbiota influenced diabetes susceptibility. Moreover, Lp299v supplement modulated antioxidative defense and ER stress responses in ß-cells, potentially offering a new therapeutic direction to thwart diabetes progression and preserve insulin secretion.


Assuntos
Diabetes Mellitus Tipo 1 , Microbioma Gastrointestinal , Lactobacillus plantarum , Ratos , Animais , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Fator 2 Relacionado a NF-E2 , Antioxidantes , Caseínas , Propionatos , Suplementos Nutricionais , Butiratos
2.
Sci Rep ; 12(1): 3306, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228584

RESUMO

The incidence of type 1 diabetes (T1D) has increased, coinciding with lifestyle changes that have likely altered the gut microbiota. Dysbiosis, gut barrier dysfunction, and elevated systemic inflammation consistent with microbial antigen exposure, have been associated with T1D susceptibility and progression. A 6-week, single-arm, open-label pilot trial was conducted to investigate whether daily multi-strain probiotic supplementation could reduce this familial inflammation in 25 unaffected siblings of T1D patients. Probiotic supplementation was well-tolerated as reflected by high participant adherence and no adverse events. Community alpha and beta diversity were not altered between the pre- and post-supplement stool samplings. However, LEfSe analyses identified post-supplement enrichment of the family Lachnospiraceae, producers of the anti-inflammatory short chain fatty acid butyrate. Systemic inflammation was measured by plasma-induced transcription and quantified with a gene ontology-based composite inflammatory index (I.I.com). Post-supplement I.I.com was significantly reduced and pathway analysis predicted inhibition of numerous inflammatory mediators and activation of IL10RA. Subjects with the greatest post-supplement reduction in I.I.com exhibited significantly lower CD4+ CD45RO+ (memory):CD4+ CD45RA+ (naïve) T-cell ratios after supplementation. Post-supplement IL-12p40, IL-13, IL-15, IL-18, CCL2, and CCL24 plasma levels were significantly reduced, while post-supplement butyrate levels trended 1.4-fold higher. Probiotic supplementation may modify T1D susceptibility and progression and warrants further study.


Assuntos
Diabetes Mellitus Tipo 1 , Probióticos , Diabetes Mellitus Tipo 1/terapia , Humanos , Inflamação , Projetos Piloto , Probióticos/uso terapêutico , Irmãos
3.
PLoS One ; 13(1): e0190351, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29293587

RESUMO

Environmental changes associated with modern lifestyles may underlie the rising incidence of Type 1 diabetes (T1D). Our previous studies of T1D families and the BioBreeding (BB) rat model have identified a peripheral inflammatory state that is associated with diabetes susceptibility, consistent with pattern recognition receptor ligation, but is independent of disease progression. Here, compared to control strains, islets of spontaneously diabetic BB DRlyp/lyp and diabetes inducible BB DR+/+ weanlings provided a standard cereal diet expressed a robust proinflammatory transcriptional program consistent with microbial antigen exposure that included numerous cytokines/chemokines. The dependence of this phenotype on diet and gastrointestinal microbiota was investigated by transitioning DR+/+ weanlings to a gluten-free hydrolyzed casein diet (HCD) or treating them with antibiotics to alter/reduce pattern recognition receptor ligand exposure. Bacterial 16S rRNA gene sequencing revealed that these treatments altered the ileal and cecal microbiota, increasing the Firmicutes:Bacteriodetes ratio and the relative abundances of lactobacilli and butyrate producing taxa. While these conditions did not normalize the inherent hyper-responsiveness of DR+/+ rat leukocytes to ex vivo TLR stimulation, they normalized plasma cytokine levels, plasma TLR4 activity levels, the proinflammatory islet transcriptome, and ß-cell chemokine expression. In lymphopenic DRlyp/lyp rats, HCD reduced T1D incidence, and the introduction of gluten to this diet induced islet chemokine expression and abrogated protection from diabetes. Overall, these studies link BB rat islet-level immunocyte recruiting potential, as measured by ß-cell chemokine expression, to a genetically controlled immune hyper-responsiveness and innate inflammatory state that can be modulated by diet and the intestinal microbiota.


Assuntos
Quimiocinas/metabolismo , Diabetes Mellitus Tipo 1/imunologia , Dieta , Microbioma Gastrointestinal , Inflamação/prevenção & controle , Ilhotas Pancreáticas/metabolismo , Animais , Citocinas/sangue , Perfilação da Expressão Gênica , Imunidade Inata , Inflamação/imunologia , Mediadores da Inflamação/sangue , Ratos , Ratos Endogâmicos F344 , Transcrição Gênica
4.
Diabetes ; 63(11): 3960-73, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24760139

RESUMO

Mechanisms associated with type 1 diabetes (T1D) development remain incompletely defined. Using a sensitive array-based bioassay where patient plasma is used to induce transcriptional responses in healthy leukocytes, we previously reported disease-specific, partially interleukin (IL)-1-dependent signatures associated with preonset and recent onset (RO) T1D relative to unrelated healthy control subjects (uHC). To better understand inherited susceptibility in T1D families, we conducted cross-sectional and longitudinal analyses of healthy autoantibody-negative (AA(-)) high HLA-risk siblings (HRS) (DR3 and/or DR4) and AA(-) low HLA-risk siblings (LRS) (non-DR3/non-DR4). Signatures, scored with a novel ontology-based algorithm, and confirmatory studies differentiated the RO T1D, uHC, HRS, and LRS plasma milieus. Relative to uHC, T1D family members exhibited an elevated inflammatory state, consistent with innate receptor ligation that was independent of HLA, AA, or disease status and included elevated plasma IL-1α, IL-12p40, CCL2, CCL3, and CCL4 levels. Longitudinally, signatures of T1D progressors exhibited increasing inflammatory bias. Conversely, HRS possessing decreasing AA titers revealed emergence of an IL-10/transforming growth factor-ß-mediated regulatory state that paralleled temporal increases in peripheral activated CD4(+)/CD45RA(-)/FoxP3(high) regulatory T-cell frequencies. In AA(-) HRS, the familial innate inflammatory state also was temporally supplanted by immunoregulatory processes, suggesting a mechanism underlying the decline in T1D susceptibility with age.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Adolescente , Adulto , Quimiocina CCL2/sangue , Quimiocina CCL3/sangue , Quimiocina CCL4/sangue , Criança , Estudos Transversais , Feminino , Humanos , Interleucina-1/sangue , Interleucina-10/sangue , Subunidade p40 da Interleucina-12/sangue , Estudos Longitudinais , Masculino , Linfócitos T Reguladores/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...